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The quest to identify materials with tailored properties is increas-
ingly expanding into high-order composition spaces, with a corre-
sponding combinatorial explosion in the number of candidate
materials. A key challenge is to discover regions in composition
space where materials have novel properties. Traditional predic-
tive models for material properties are not accurate enough to
guide the search. Herein, we use high-throughput measurements
of optical properties to identify novel regions in three-cation metal
oxide composition spaces by identifying compositions whose op-
tical trends cannot be explained by simple phase mixtures. We
screen 376,752 distinct compositions from 108 three-cation oxide
systems based on the cation elements Mg, Fe, Co, Ni, Cu, Y, In, Sn,
Ce, and Ta. Data models for candidate phase diagrams and three-
cation compositions with emergent optical properties guide the
discovery of materials with complex phase-dependent properties,
as demonstrated by the discovery of a Co-Ta-Sn substitutional al-
loy oxide with tunable transparency, catalytic activity, and stabil-
ity in strong acid electrolytes. These results required close coupling
of data validation to experiment design to generate a reliable
end-to-end high-throughput workflow for accelerating scientific
discovery.

data science | materials discovery | complex oxides | optical absorption |
oxygen evolution electrocatalysis

Increased incorporation of data science in materials research is
anticipated to accelerate discovery of materials with improved

properties and combinations thereof for technological applica-
tions requiring multifunctional materials (1, 2). Machine learning
is one popular approach for building predictive models, but lim-
ited materials training data often compromises the prediction
accuracy, especially in composition spaces for which no training
data are available (3–5). Training data are particularly limited in
high-order composition spaces (e.g., at least three cation oxides),
which offer opportunities for tuning multiple properties through
formation of a phase, i.e., a crystal structure or substitutional alloy,
that contains all three cations. The vast number of potential high-
order compositions exceeds current methods of discovery or pre-
diction (6–9), and prediction of substitutional alloy phases and
their properties remains a substantial challenge (10, 11).
We develop two data science methods to discover materials in

high-order composition spaces. The phase diagram model uses
thermodynamic equilibrium assumptions to propose candidate
phase diagrams using only optical absorption data. The emergent
property model uses the same data to identify compositions whose
optical properties cannot be explained by combinations of lower-
order compositions of the same elements. The present work ad-
ditionally describes the design and implementation of the high-
throughput workflow that provides data to these models as well as
an example use case for guiding discovery. Our primary finding is
that appropriately constructed data science models can make in-
ferences about the phase behavior of complex materials using data
that are not traditionally used for phase characterization. These
inferences add scientific value to existing datasets and guide ma-
terials discovery efforts.

We demonstrate this approach for three-cation oxide systems
via high-throughput experiments coupled to automated quality
control and modeling of spectral microscopy data. The select
three-cation oxide compositions whose properties appear unique
compared to lower-order oxide compositions are then candidates for
more expensive and time-consuming structural and functional
characterization. This approach is distinct from computational in-
verse design wherein a model predicts a material to have a specific
property, a promising strategy that is hampered by the dual chal-
lenges of computational prediction of experimental properties and
the computational generation of synthesizable materials (12, 13).
Our approach shifts the strategy from identifying materials with a
specific property to rapidly screening materials that may be excep-
tional for any property. By releasing the database of experiments and
analyses alongside this work, we aim to accelerate the community’s
selection of composition spaces and compositions therein for dis-
covery of materials exhibiting a broad range of properties (14).
Discovering complex phases with desirable properties, whether by

experiment or computation, is highly challenging due to the com-
binatorics of composition spaces. Searching the Materials Project
(15) for entries containing oxygen, having an associated Inorganic
Crystal Structure Database entry (16), having unique composition
and space group, and excluding inert gas and nonmetallic elements
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(He, Ne, Ar, Kr, Xe, Rn, C, N, F, P, S, Cl, Se, Br, I, and H) yields
755 1-cation oxide entries from 73 cation elements. Applying the
same search to two-cation oxides increases the number of identi-
fied materials to 4,345, although the corresponding search for
three-cation oxides yields only 3,163 materials. While some two-
cation oxide phases undoubtedly remain to be discovered, there
has been extensive computational exploration of two-cation oxides,
making such materials the focus of recent high-throughput com-
putational (17–19) and machine learning–driven materials discov-
ery (20–23). Higher-order composition spaces enable further
tuning of materials properties, but the expense of comprehensive
search of combinatorial spaces is clear when considering 3-cation
oxides. Using the 73 cation elements from the 1-cation oxide en-
tries, there are 62,196 (73 choose 3) possible 3-cation oxide com-
position spaces, yet only 2,205 are represented in the Materials
Project, leaving over 96% of the composition spaces with no
existing data.
The computational exploration of three-cation phases to date

has focused on crystal structures where each cation has a unique
crystallographic site. The site substitution of multiple elements
on a single crystallographic site is a distinguishing feature of
metal substitutional alloys, and a metal oxide structure exhibiting
such substitutions on cation sites is referred to herein as an
substitutional alloy oxide (or “alloy” for brevity). A three-cation
oxide can crystallize in a structure observed in the one or two-
cation subspaces, and the composition-tuned decoration of the
cation sublattice comprises an opportunity for tuning properties
in the three-cation composition space. Since the site substitution
is disordered, large unit cells combined with ensemble averaging
of different random site decorations are required to explicitly
model substitutional alloys. While approximations to computa-
tional modeling of alloys have been developed (24–27), alloys in
high-order composition space comprise a dramatically underex-
plored class of materials for discovery efforts. We know from the
examples of high-temperature superconductors and catalysis that
extremely valuable properties are obtainable via substitutional
alloying in high-order composition spaces (8, 28, 29).
We report a high-throughput workflow for discovering candi-

date compositions for functional properties by coupling high-
throughput synthesis and optical characterization with auto-
mated data interpretation. Parallel optical screening was recently
demonstrated as a proxy for phase behavior in the context of
combinatorial thermal processing of individual compositions
(30). We extend this approach to high-order composition spaces

using inkjet printing (31) to deposit composition-gradient lines of
material that are subsequently imaged by a purpose-built hyper-
spectral microscope that measures optical absorption from the
infrared to ultraviolet (UV). We present a dataset consisting of
nine channels of optical absorption data for a series of metal oxide
composition samples. Each composition sample is defined by the
stoichiometry of cation elements, with oxygen content driven to-
ward equilibrium by calcination at fixed oxygen pressure. The
dataset contains 376,752 distinct compositions from 108 three-
cation oxide systems based on the cation elements Mg, Fe, Co,
Ni, Cu, Y, In, Sn, Ce, and Ta, for which only the Ce-Cu-Fe oxide
system contains an entry in the Materials Project. We present a
data science workflow incorporating cross-validation and other
quality control measures to establish confidence in the data, en-
abling subsequent data modeling to predict aspects of the un-
derlying phase behavior. In the present work, we discuss models
that 1) predict candidate phase diagrams along with the absorp-
tion spectrum of each phase (the “phase diagram model”) and 2)
predict the likelihood that the three-cation composition space
contains a three-cation phase whose properties are distinct from
one or two-cation phases (the “emergent property model”). These
complementary prediction models are emblematic of the usage of
data from high-throughput experiments to make inferences that
accelerate resource-intensive experiments.
This implementation of data science–driven analysis of ex-

perimental data are complementary to quantum mechanical (32)
and machine learning (22, 33) prediction of new phases. De-
tection of interesting systems and compositions via the modeling
of optical data can seed an investigation for new phases and/or
for determining whether the three-cation compositions exhibit
exceptional properties. Our approach builds upon a foundation
of combinatorial materials science in which synthesis of com-
position libraries is coupled to measurement of properties of
interest (34–45). While providing a direct route to discovery of a
desirable property in a specific composition system, this ap-
proach limits exploration of many composition spaces due to
both the high relative expense of property measurements and the
need to measure every composition library for every property of
interest. Modeling phase behavior from optical properties to
guide further experiments is illustrated herein for the Co-Ta-Sn
oxide composition space, for which X-ray diffraction (XRD)
experiments verified the discovery of the (Sn,Co,Ta)O2 rutile
substitutional alloy oxide. Furthermore, screening of the alloy
compositions for electrocatalysis of the oxygen evolution
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Fig. 1. Workflow for synthesis, characterization, and analysis of metal oxide libraries. One iteration through the workflow involves a batch of 20 composition
libraries corresponding to the 20 three-cation composition spaces for a set of six elements. Each experimental process (blue, steps 1 to 4) is parallelized for 1 to
20 plates at a time. Each analysis step (green, steps 5 to 10) is computationally automated with manual quality control. Given a selection of cation elements
(step 0), three-cation composition libraries are deposited (step 1) and calcined (step 2). Imaging of each library plate for quality control (step 3) is followed by
high-resolution spectral microscopy (step 4). Image processing (step 5) and identification of the locations of each printed composition (step 6) enable
modeling of composition-dependent spectral absorption (step 7). Provided sufficient reproducibility within the composition library (step 8), candidate phase
diagrams and compositions exhibiting emergent optical properties (step 9) are presented to users (step 10) to design follow-up measurements (step 11).
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reaction revealed an optimal combination of activity and stabil-
ity, which was enabled by the optical discovery despite the lack of
any explicit relationship between the optical and catalytic prop-
erties. Although demonstrated for three-cation oxides, the
methodology is designed to be implementable in even higher-
order composition spaces.

Results
To establish a high-throughput workflow for exploring three-
cation oxide composition spaces, we carried out a suite of viabil-
ity and feasibility experiments. A primary result of the experiment-
computation iterative design was the workflow (Fig. 1) that inte-
grates highly parallelized experimental processes with automated
computational processes, whose outcomes inform follow-up ex-
periments as well as the choice of elements and conditions to
reseed the workflow.
The materials synthesis portion of the workflow commences

with deposition of metal oxide precursor solutions onto alumi-
nosilicate glass library plates using an inkjet printer (46). For
process optimization, we designed the composition library using
discrete lines of material aligned with the fast-raster direction of
the print head, with each line containing a continuous compo-
sition gradient. Our focus on the development of procedures
based on linear composition gradients was also motivated by the
transferability of the workflow to higher-order composition
spaces. As described in greater detail (SI Appendix, section A), a
linear composition gradient spanning a composition space with N
elements can intersect (N-2)-dimensional phase field boundaries
such that all phase boundaries are detectable via analysis of a
sufficiently dense set of composition lines. For the three-cation
composition space, we used a network of 45 composition lines
spanning the ternary composition triangle, the composition
graph for three-cation oxides with oxygen stoichiometry deter-
mined by materials processing (SI Appendix, Fig. S1C). Com-
bined with the two-cation composition lines at the perimeter of
the ternary composition triangle, this corresponds to 48 total
composition line segments (see SI Appendix, Figs. S2–S4).
A final primary design choice of the synthesis workflow is the

materials scope of a single print session. We balanced practical
considerations of printer operation with the desire to synthesize
broad swaths of three-cation composition space, leading to the
choice that each print session includes a set of six cation ele-
ments (Fig. 1, step 0). All 20 possible combinations of three
metals from the six inks are deposited, one combination per li-
brary plate (SI Appendix, section A). Following inkjet printing
(Fig. 1, step 1), the set of plates from a print session undergo
parallel drying and calcination processes, culminating with tube
furnace calcination at 750 °C for 10 h (Fig. 1, step 2).
Each plate is imaged with a flatbed scanner to aid visual in-

spection (Fig. 1, step 3), which at a minimum confirms that ma-
terial was deposited across each plate and that deposited material
is constrained to the intended lines as opposed to diffuse depo-
sition indicative of print head failure. The library plates are then
characterized using hyperspectral microscopy (Fig. 1, step 4), the
final high-throughput experiment. Data analysis commences with
image processing (Fig. 1, step 5) to obtain spectral transmittance
images that are subsequently aligned to the intended deposition
pattern (Fig. 1, step 6).
To mitigate the influence of the thickness fluctuations, which

are inherent to the inkjet-printed materials, the optical absorption,
i.e., a spectral absorption coefficient (α) with arbitrary units, is
calculated using a nonnegative matrix factorization algorithm
(Fig. 1, step 7). The α signal from each composition sample is then
compared to the median value from 10 composition duplicates
deposited on the same plate, enabling visual quality control for
reproducibility (Fig. 1, step 8). At this point in the workflow, the
dataset for each composition line segment within each three-
cation library plate consists of the 10-fold replicate α signals, the

aggregated signal αcomp, and the uncertainty σα for each of the
nine optical channels (photon energies).
While this rich dataset is amenable to a host of analyses, the

present work focuses on two complementary data interpretation
models (Fig. 1, step 9). Both models rely on an underlying as-
sumption that the thin-film compositions equilibrate with the O2
atmosphere during the 10 h anneal at 750 °C and that kinetic
limitations prohibit phase changes during cooling and storage at
ambient temperature (SI Appendix, section C). It is worth noting
that annealing at higher temperatures may exceed liquidus
temperatures of many compositions, which would complicate the
thermodynamic equilibrium assumption, because such composi-
tions would crystallize at different temperatures during cooling.
Annealing at lower temperatures may limit diffusion and thus limit
equilibration with the O2 in the anneal atmosphere. Collectively,
these limitations mean that it would be nontrivial to adapt the
methods of the present work to include the oxygen composition
and temperature axes in phase diagram modeling. For the primary
goal of guiding materials discovery efforts with data models,
processing very thin films at a sufficiently high temperature to
promote equilibration enables data modeling under this plausible
thermodynamic assumption.
In the phase diagram model, we approximate a phase diagram

that is consistent with the α data. We consider a discretization of
the ternary composition space with composition intervals of 1/6
(composition intervals of circa 16.7 at.%), yielding 15 and 10
composition points with two and three cations, respectively. For
a phase diagram with K phases in addition to the three end-
members, there are 25 choose-K placements of the phase points,
which we exhaustively search. Various combinations of Alkemade
lines for connecting the K + 3 phase points to form compatibility
triangles are considered via a formation energy sampling scheme,
and we assume that within each phase field the α signals vary
linearly with composition (the lever rule). This approximation
enables each candidate phase diagram to be fit to the measured α
signals with a regression model containing a fit parameter for each
photon energy at each of the K + 3 phase points. The phase di-
agram that best approximates all the α values, taking into account
the observed noise, is determined for each value of K. The analysis
thus provides a candidate phase diagram that best describes the
composition map of optical absorption for each K.
Importantly, this approach to approximating the phase dia-

gram does not explicitly model substitutional alloying, which
would drastically increase the set of candidate phase diagrams, as
described further in SI Appendix, section C. To ascertain the
implications of this aspect of the phase diagram model, consider
a two-cation phase A1−xBx, where a third cation can substitute for
B up to a saturated alloy composition A1−x(B1−yCy)x. If the alloy
obeys a linear rule-of-mixtures relationship between y and the
measured properties, then the data will be well modeled by this
phase diagram model with a fitted phase point at the saturated
alloy composition. Multiple alloying degrees of freedom may re-
quire additional fitted phase points on the perimeter of the alloy
phase field, and any nonlinear relationship between properties
and alloy composition could result in fitted phase points within the
alloy phase field to provide the best linear lever-rule approxima-
tion to the nonlinear composition-property data. Regardless,
structure identification for both stoichiometric and alloy phases
requires further characterization under the guidance of the fitted
phase diagrams.
We use K1st3cat as an integer metric to summarize the fitting

results, which is the lowest value of K at which the phase diagram
model results in a three-cation fitted phase point. A low value for
this metric indicates that the composition trends within the
three-cation composition space cannot be well described with
only two-cation phases. However, higher values of this metric do
not preclude the existence of a three-cation phase with spectral α
that is distinct from all one and two-cation compositions because
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high variability in α along the two-cation composition lines may
drive the phase diagram model to fit the data using only two-
cation phase points. We thus seek a metric to summarize
whether optical properties indicative of nontrivial phase behav-
ior exist within the three-cation space.
The emergent property model complements the phase dia-

gram model by focusing on detection of emergent optical ab-
sorption within the three-cation composition space, optical
properties that are inexplicable from the properties of one and
two-cation materials. For this analysis, we discretize the com-
position space using composition intervals of 1/10 to define 30
composition regions on the perimeter of the ternary composition
graph and 46 composition regions in the three-cation space. We
then consider each of these 46 composition regions independently
and apply Gibbs’ phase rule per the thermodynamic equilibrium
assumption noted previously, which requires that no more than
three phases will coexist at a given three-cation composition. By
considering each of the 4,060 (30 choose 3) combinations of signals
from the subspaces, we identify the linear combination of signals
that maximizes the likelihood given the measured three-cation sig-
nal and its variability from the three-cation composition region. The
metric P is the probability of this maximum-likelihood-scenario
signal, where lower P corresponds to stronger evidence of an
emergent property in the three-cation space. The value of P char-
acterizes each of the 46 composition regions, and taking the mini-
mum value provides the metric for evaluating the existence of an
emergent property upon combination of the three cations under
consideration.
The results of these analyses are visualized alongside αcomp to

create a graphical summary of each library plate (Fig. 1, step 10)
to guide follow-up measurements (Fig. 1, step 11). Representa-
tive data renderings are shown (Fig. 2) for three different com-
position libraries, which were chosen to all be Fe-containing
systems to demonstrate the variability in optical properties and
composition trends through variation of the other two elements.
A summary of the 108 three-cation composition libraries based
on the phase diagram and emergent property models is shown in
Fig. 2E. The three systems shown (Fig. 2 A–C) represent dif-
ferent regions of this summary plot.
The Fe-Co-Ta system is shown (Fig. 2A) as representative of a

typical oxide library plate, being in the midrange of both K1st3cat

and minimum P. The optical trends are largely smooth and
monotonic in composition space. Comparison of the fitted phase
diagrams at K = 2 and K = 3 (Fig. 2D) and comparison with the
composition plot of P facilitates assessment of whether the data
support the existence of a three-cation phase. In this case, there is
no strong evidence for a three-cation phase because the P signal
indicates that the composition regions around the candidate three-
cation phase are well described by two-cation compositions, with
the lowest probability composition region indicating that a small
concentration of Fe alters the optical properties of Ta-Co oxides,
which is likely due to a small degree of substitutional alloying. The
conclusion is that this system is well described by two-cation phases
being present on the Fe-Ta and Ta-Co composition lines, which is
validated via XRD measurements (SI Appendix, Fig. S5). The
identified two-cation phases are Ta2CoO6 and FeTaO4, which were
previously known, with the three-cation compositions showing a
mixture of these two phases, consistent with the candidate phase
diagram with no three-cation phase points. XRDmeasurements on
the thin metal oxide samples are often inconclusive due to the
weak scattering signal. Indeed, our process optimization for rapid
characterization and reproducibility of optical properties results in
synthesis of samples that have an average thickness of ∼10 nm (47),
which, combined with typically poor crystallinity of the metal oxide
samples, results in undetectable XRD signals for most of the
compositions that do not contain the heaviest elements.
A system known to contain a three-cation phase was investi-

gated during the process-development phase of the project, prior
to the generation of 108 three-cation systems of the primary
dataset. The optical and XRD characterization of the library of
the Cu-Fe-In oxide system is shown in SI Appendix, Fig. S6. The
K = 3 candidate phase diagram suggests the existence of a two-
cation and a pair of three-cation phases. XRD validation char-
acterized these three phases as CuFe2O4, the target CuFeInO4
phase, and possibly an alloy of this three-cation phase. The XRD
results also indicate Fe substitution into CuO that is not detected
with the phase-fitting analysis. Indeed, the analysis of α cannot
detect all phases but rather indicates where phase behavior re-
sults in nontrivial alteration of optical properties.
Returning to our discussion of representative systems (Fig. 2),

the Fe-Ni-In oxide system (Fig. 2B) is representative of a system
with high K1st3cat and relatively high minimum P, corresponding
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Fig. 2. Illustrative examples and summary of optical mapping of three-cation oxides. The composition maps of the absorption coefficient (α) at 3.2 eV and 1.5
eV as well as the results of the emergent property model (log10P) are shown for (A) Fe-Co-Ta, (B) Fe-Ni-In, and (C) Fe-Sn-In composition spaces. (D) Candidate
phase diagrams with K = 2 and 3 fit points are shown for the Fe-Co-Ta system to illustrate the results of the phase diagram model. (E) The summary of
108 three-cation composition systems (gray points), including some duplicate systems from different print sessions. The horizontal axis is the lowest number of
phase fit points (K) for which the fitted phase diagram includes a three-cation phase, and the vertical axis is the minimum log likelihood value (log10 P)
obtained from the 46 composition regions in the respective three-cation composition space. The four systems described in A to C as well as the Fe-Co-Ta
system are denoted by colored markers.
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to a system with no strong evidence of nontrivial three-cation
phase behavior. Similar systems can be identified by considering
three-cation systems in the summary figure (Fig. 2E) with K1st3cat
of 5 or 6 and minimum log10 P above −30. There are 28 such
systems, corresponding to 21% of the library plates. Systems
similar to the Fe-Co-Ta oxide system (Fig. 2A), where optically
interesting two-cation compositions are apparent without strong
evidence for nontrivial three-cation phases, can be identified as
K1st3cat of 3 or 4 and minimum log10 P above −30. There are 52
such systems, corresponding to 40% of the library plates. The
other 51 systems, corresponding to 39% of the library plates, are
the strongest candidates for identification of nontrivial three-
cation phase behavior with respect to optical properties. This
class of three-cation systems is less amenable to identification of a
representative example, although one such system is the Fe-Sn-In
oxide system (Fig. 2C) for which the three-cation composition
trends, especially for α1.5eV, strongly indicate the presence of
three-cation phases. Our inspection of the data from many of
these systems along with select XRD measurements suggests that
the three-cation phase behavior is often due to substitutional
alloying within a two-cation phase, i.e., that all three cations co-
exist in a structure whose XRD pattern is indistinguishable from
that of a known two-cation phase other than slight peak shifting
that arises from alteration of the lattice constants.
Since three-cation substitutional alloying can introduce

emergent properties in the three-cation space, these systems are
of prime interest for further study, and in the present work, we
describe one such follow-up study based on the Co-Ta-Sn oxide
system (Fig. 3). This system has a relatively low minimum P and
K1st3cat = 1. Importantly, a K1st3cat value of 1 does not imply that
the underlying phase diagram contains no two-cation phases,
which would be unprecedented and counterintuitive to metal
oxide chemistry. Rather, this result indicates that there are
multiple phases in the system and that the most optically im-
portant composition trends for generating a candidate phase
diagram occur within the three-cation space. The α data for this
system appears unremarkable at first glance, but the emergent
property analysis demonstrates that a region of Ta-rich compo-
sitions are more transparent across the full visible spectrum than
any of the two-cation compositions. Given that the α values for

the Ta endmember, likely a Ta2O5-type material, are already
quite low, the lower α in three-cation space could be due to a
change in refractive index that lowers the reflectivity. Regardless,
the strong evidence of nontrivial phase behavior is due to a
statistically significant change in optical properties that merits
further investigation.
XRD analysis of select compositions within the library (SI

Appendix, Fig. S7) demonstrates the presence of a phase in the
three-cation space whose XRD pattern matches patterns for
both Ta2CoO6 and TaO2 rutile structures because the weak
XRD signal is insufficient to distinguish these rutile structures.
The Sn endmember appears to be rutile SnO2, prompting the
design of a follow-up experiment to validate the presence of
rutile alloys in the composition region bounded by these three
known rutile phases. To synthesize a thicker material and vali-
date the observation of nontrivial phase behavior with respect to
optical properties, a continuous composition spread thin film
(Fig. 4A) was sputter deposited and annealed using the same
protocol as the printed library plate. The use of a different de-
position method with the same annealing process also helps
evaluate the thermodynamic assumptions noted previously.
Subsequent XRD analysis reveals the presence of a rutile-type
structure throughout the sputter-deposited region of the three-
cation composition space, with a phase-pure rutile phase field
straddled by phase fields where the rutile phase coexists with
Co3O4 at Co-rich compositions and with Ta2O5 at Ta-rich
compositions (Fig. 4B). The composition region of the rutile
phase field and the continuous independent variation in lattice
parameters indicate two compositional degrees of freedom of
substitution on the cation sublattice. To our knowledge, a rutile
substitutional alloy oxide containing these three cation elements
has neither been experimentally observed nor computationally
predicted, producing a successful demonstration of the discovery
of a three-cation phase via analysis of optical properties. To
validate the high-throughput optical measurements, the sputter-
deposited composition spread was characterized by a combina-
tion of optical transmission-reflection spectroscopy measure-
ments and X-ray fluorescence (XRF) measurements, providing
the composition-dependent optical absorption (SI Appendix, Fig.
S8), which is shown in Fig. 4C for the three photon energies of

A B

C

D

E F

Fig. 3. Optical phase analysis of Sn-Co-Ta oxides. (A) Composition plots of the optical absorption signal at 3.2, 2.3, and 1.5 eV. (B) The K = 1 and K = 4 fitted
phase diagrams indicating that the most optically important phase point is within the ternary composition space. (C) The log likelihood from the emergent
property analysis, demonstrating that Ta-rich three-cation compositions exhibit optical properties that are markedly different from any combination of one
and two-cation compositions (nonyellow points). (D and E) The nine-channel absorption signals, with the 2.0 eV signal shown with larger line width, are
plotted along two composition lines, (D) Sn5Ta1 to Co2Ta4 and (E) Sn2Ta4 to Co5Ta1. (F) The corresponding 2.0 eV signal is shown for all composition lines with
the intersection at Sn0.3Co0.2Ta0.5 denoted by a gray point, corresponding to the gray vertical region highlighted in D and E.
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Fig. 3. These data demonstrate excellent qualitative agreement
with those of the high-throughput screening, most notably that the
absorption in the three-cation rutile alloy region is quite low de-
spite the presence of Co. The three-cation rutile oxides can exhibit
similar or even lower absorption than more Ta-rich compositions,
motivating future investigation for applications such as transpar-
ent conducting oxides (48).
In the SI Appendix, we provide additional follow-up experi-

ments, including characterization of select compositions by
spectroscopic ellipsometry (SI Appendix, Fig. S9). Following our
assertion that emergent optical properties in three-cation space
are a harbinger for other emergent properties, we continued
follow-up measurements of this system by considering functional
properties that have no known underlying relationship to optical
absorption. Given the common use of Co in both metal and oxide
catalysts and the use of Sn and Ta oxides as corrosion-resistant
materials, we sought to ascertain whether the three-cation com-
positions offered a desirable combination of catalytic activity and
stability against corrosion. Characterization of oxygen evolution
electrocatalysis proceeded in pH 3 and then pH 0 (SI Appendix,

Fig. S10) electrolyte, highly corrosive conditions where Co oxides
are known to suffer from rapid corrosion. These results indicate
that Co is stabilized by its combination with Ta and Sn, providing a
route to electrochemical stabilization of catalytic sites, as has been
observed in other rutile substitutional alloy oxides (49). The ad-
ditional compositional tuning of optical transparency is important
for applications such as solar fuel generation, and collectively, the
results demonstrate the three-cation tuning of multifunctional
properties in a composition system identified by the computa-
tional analysis of optical data.

Discussion
The discovery of a composition-tuned family of electrocatalysts
originated from modeling of optical microscopy data, highlighting
the interrelationships of seemingly disparate materials properties
through their underlying composition and structure, a central te-
net of the materials exploration strategy described in the present
work. Composition-structure-property relationships are ubiquitous
in materials science, so identification of nontrivial composition-
structure relationships can accelerate the identification of
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Fig. 4. Follow-up investigation of the Sn-Co-Ta oxide composition space using sputter-deposited thin films. (A) The photograph of the sputter-deposited film
shows contour lines of cation composition determined by XRF. (B) The rutile unit lattice constants calculated from XRD measurements at 72 compositions are
shown, where the color scales include annotations for the corresponding values for the previously known rutile phases in the system. Magenta lines indicate
phase boundaries, where only the rutile phase was observed between the lines. The brown dashed line indicates the composition region from Fig. 3Cwith log
P < −30, which coincides with the rutile alloy phase field and validates the optical-based discovery of a three-cation phase. (C) For select compositions, optical
absorption coefficients determined by transmission-reflection spectroscopy (at the same three photon energies as Fig. 3A) validate the low absorption in the
composition region of interest. Note that the flat thin-film morphology of the sputter-deposited samples combined with film thickness measurements enables
determination of the absorption coefficients in units of nm−1.
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nontrivial composition-property relationships for any property.
Since high-throughput mapping of composition-structure relation-
ships remains a challenge, especially in high-order composition
spaces, we translate this problem into identification of nontrivial
composition-optical property relationships to guide exploration of
exceptional materials for other properties, which are often more
difficult to measure than optical properties. Our strategy recognizes
that most high-order composition spaces contain uninteresting
mixtures of lower-order composition phases and that the functional
properties of such high-order compositions may be unremarkable
compared to those of the lower-order compositions.
The present effort to identify interesting three-cation systems

and compositions has an understood possibility for false-negative
detection of nontrivial three-cation phase behavior, e.g., when a
three-cation phase has optical properties that are well modeled
by linear interpolation from those of the composition subspaces.
The workflow of Fig. 1 is designed to identify the most optically
interesting phases, and the extent by which the data science
models can guide materials discovery efforts depends on how
closely the chemical physics underlying the target properties is
related to that of optical absorption. For example, guidance of
experimentation for discovery of novel electronic materials may
be better served by adapting the methods of the present work to
infrared measurements to characterize free carrier absorption or
by moving beyond optical measurements by employing impedance
spectroscopy or other measurements for which high-throughput
methods have been developed (50). With regard to false-positive
detection for discovery of three-cation phases, unambiguous
demonstration of a false positive requires demonstration that the
third cation is not present in an observed one or two-cation oxide
phase, which is very difficult using the inkjet-printed samples. The
primary expected cause of a false positive would be due to changes
in optical absorption that arise from extrinsic properties such as
film morphology rather than intrinsic optical properties of the
metal oxide composition. The non-negative matrix factorization
(NMF) model for extracting optical signals was designed to miti-
gate this issue, but ultimately, the tolerance for false positives must
be considered in the context of a specific research goal. For ex-
ample, to lower the false-negative rate at the expense of a higher
false-positive rate, the down-selected compositions of interest can
be expanded by considering candidate phase diagrams from sev-
eral different values of K and/or using a higher threshold for log P.
The identification of interesting composition-optical property

trends in three-cation composition spaces can serve as a prior or
a down-selection criterion for synthesis and/or measurement of
properties that are more resource intensive than those employed in
this high-throughput workflow. For example, choosing a threshold
log10 P of −30 (see Fig. 2E) would down-select the ∼8% of the
three-cation composition spaces that are the most promising for
discovery of exceptional properties. When applying this threshold to
the individual three-cation compositions from the 10 at.% dis-
cretization, only 1% of compositions meet this criteria, providing
100-fold down-selection of compositions that merit further charac-
terization. With this approach, one does not need to make auto-
mated high-throughput methods for measuring every material
property of interest. Harnessing the interrelationships among
properties through their shared relationships to composition and
structure enables the high-throughput measurements of one prop-
erty to guide exploration of other properties.

Materials and Methods
Printing, Calcination, and Imaging of Material Libraries. Methods described
previously were adapted for inkjet printing of three-cation oxide libraries
(46). For the present work, extensive preliminary experimentation was per-
formed to minimize the printed feature size while maximizing the repro-
ducibility of printer performance. The composition lines were deposited at
the maximum print resolution of the printer (1,440 × 2,880 dpi) using a
CMYK tiff image at 300 dpi. The gradients were discretized into strips of

0.25 × 0.25 mm (3 × 3 pixels) samples of constant composition. The color was
set to 50% of saturation to reduce the amount of ink delivered to produce
sharp printed features, as delivery of larger quantities of ink produced wider
strips than designed by spreading of the wet ink. The color saturation in the
printing image is specified as an integer from 0 to 127 for each print channel.
For each pixel, the 127 units of ink were distributed among the C, M, and Y
channels to correspond to the desired composition. For two-cation composi-
tion lines, this corresponds to an integer change of 1 (circa 0.79 at.%) between
neighboring samples and an average composition gradient of 1/127/0.25 mm,
which is ∼3.1 at.%/mm. For three-cation composition lines, this same compo-
sition gradient was applied, and the integer value of each channel was chosen
by the set of 3 integers that sum to 127 and minimize the rms distance to the
desired normalized composition. The printed composition lines were sepa-
rated by a 0.5-mm region (6 pixels) with no ink deposition.

The inks were prepared from an ink base consisting of 12 g or Pluronic F127
dissolved in 500 mL of absolute ethanol, 16.0 mL of glacial acetic acid, and
6.0 mL of concentrated nitric acid (HNO3) (46). The metal oxide precursor inks
were prepared immediately before each print session by dissolving 3.3 mmol
of each metal salt (used as received from Sigma-Aldrich) in 20.0 mL of the
prepared ink base. The specific metal precursors were Fe(NO3)3-9H2O,
Mg(NO3)2-6H2O, Ni(NO3)2-6H2O, SnCl2-2H2O, TaCl5, Y(NO3)3-6H2O, Cu(NO3)2-
3H2O, InCl3-4H2O, Ce(NO3)3-6H2O, and Co(NO3)2-6H2O. Each three-cation
composition library was printed onto a 10 cm × 15 cm glass plate Corning
Eagle XG aluminosilicate glass by assigning the different ink channels to the
CMY colors of the library design image as needed. Using these inks with the
printer parameters described, 1.9 nmol of metal oxide precursor are deposited
per square millimeter within the printed strips. For the oxide products, an
average thickness of ∼10 nm is calculated from the bulk densities of the metal
oxides; however, the film thickness variations inherent in the printing method
produce regions of the film up to 50 nm in thickness. Thus, the films are thin
enough to achieve equilibrium with the O2(g) atmosphere during calcination
at 750 °C for 10 h, which are the thermal processing conditions used herein.

A given print session corresponds to selection of six of these inks to load
into six of the eight printer channels. Given the choice to explore three-cation
spaces and the experiment design of depositing 10-fold duplication of the
compositions from a three-cation space on a single library plate, the choice
of using six elements in a single print session is motivated by the ability to
accommodate batches of 20 library plates (1 for each of the 6-choose-3 el-
emental combinations) in each experiment process. Furthermore, the eight-
channel printhead typically fails one channel at a time, and the planned use
of six channels in a given print session extends the useful lifetime of the
print head. For some print sessions, a subset of the 20 possible three-cation
combinations were deposited.

The printed plates from a given print session were loaded into quartz racks
placed in a 37 °C oven as each was printed. Each plate was supported on a
quartz (fused silica) shelf to provide mechanical support and prevent rede-
position of evaporated material onto the back side of the plates. The
20 three-metal oxide composition plates were loaded into three racks and
held at 37 °C for 16 to 24 h, moved to a 67 °C oven for 24 to 36 h, and then
calcined in a tube furnace as one batch. The calcination process was per-
formed in a sealed 32 L tube using a controlled ramp (1.17 C/min) to 750 °C,
held for 10 h, and then actively (but uncontrolled) cooled to <100 °C over
several hours. The process was conducted with the samples in the furnace
hot zone, surrounded by baffles, the pressure of O2 added to the sealed tube
at room temperature was increased from 300 Torr to 600 Torr at the end of
the ramp, when the O2 was replaced via evacuation and back-filling with
300 Torr of fresh O2 at the start of the 750 °C soak. The high-throughput
workflow described herein was exercised with calcination temperatures
spanning 350 °C to 750 °C during workflow development, although the
primary results of the present work use only the 750 °C condition to mitigate
limitations in phase formation related to elemental diffusion.

After calcination, each plate was imaged using an Epson V700 flat plate
scanner in transmission positive film (slide film) mode at 4,800 dpi resolution.
These plate images were examined using image processing software to in-
crease contrast and magnification to verify the complete printing of the
plate, without variation in ink delivery as a result of printer or print head
clogging or air bubbles. After passing this visual quality control step, the
plates were imaged using the spectral microscope system.

Optical absorption was characterized by a purpose-built microscope
consisting of a microscope base (Olympus BX53M), sCMOS image sensor
(Andor Zyla 5.5), 2.5 × 0.08 numerical aperture objective lens (Olympus 1-
U2M921), motorized XY stage (Prior H105), automated acquisition software
(Molecular Devices MetaMorph), and a custom high-speed nine-channel
hyperspectral light source (Advanced Research Consulting). The light source
featured nine individual light emitting diodes (385 nm, 395 nm, 450 nm, 530
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nm, 590 nm, 615 nm, 660 nm, 740 nm, 850 nm, with spectral half width from
10 to 40 nm) coupled via polychroic mirrors to a single liquid light guide
connected to the microscope.

The high-throughput synthesis workflow was designed so that each li-
brary plate and their composition samples would experience the same
conditions so that compositional variations can be modeled with all else
being equal. This is most well achieved within a given print session, whereas
additional “hidden” variables between different print sessions can introduce
universal and/or composition-dependent variations in the synthesized materials.
Possibilities for such variables include variation in precursor chemical lot, print-
head characteristics, ambient humidity, and variable base pressure of the tube
furnace that influences trace gas concentrations. For the data models of the
present work, some variability in materials among print sessions is tolerable,
although we note that adaption of the workflow to measure, for example,
quantitative absorption coefficients for all three-cation oxides would require
additional calibrations for a given print session and cross-print-session validation.

Image Preprocessing. Plates were imaged in a 17 × 26 grid of partially
overlapping, nine-channel, 16-bit images. The raw, unstitched images com-
prised 43 GB of image data per plate. These images contain transmission
intensity IT,j for which zero-valued pixels are removed by replacing intensity
values below 10−9 with this minimal value. Since fewer than 20% of the
pixels are designed to have printed material, the representative transmission
signal from the bare glass plate, Iglass, is taken as the 90th percentile of the
intensities in the set of images IT. The dark signal from the detector is ac-
quired by performing a scan with no illumination, producing the aver-
age image Idark. The fractional transmission images are then calculated as
Tj = (IT, j − Idark)/(Iglass − Idark). The series of transmission images are stitched
together to create the full plate image of fraction transmission, T. Joining
this image to the plate design is achieved with an affine transformation
calculated from manual alignment of three corners of the approximately
rectangular printed region. This alignment procedure is required since the
printer can exhibit variation in its print resolution (pixels per unit length) on
the scale of 1% from day to day, which constitutes a negligible variation in
the intended composition gradient but an impactful alteration to the as-
sociation of imaged material to intended composition. We discretize the
pseudocontinuous composition lines into small regions with approximately
constant composition, which are referred to as “samples.”

Calculating the Absorption Coefficient. The Beer-Lambert law provides a
common model for calculating the spectral absorption coefficient α from
fractional transmission and reflection:

ατ ≅ −ln T( ),
where τ is the thickness of the material, and T is the fraction of incident light
that is transmitted, and the amount of reflected light is assumed to be small
compared to absorbed or transmitted light.

The experiment design (SI Appendix) includes printing of at least 10
samples of each composition at different locations on the plate. When cal-
culating the absorption coefficient, we begin by selecting a set of pixels to
be used in the absorption coefficient calculation. When calculating the ab-
sorption spectrum for each sample, this set of pixels (Psample) is the set of 3 ×
3 pixels associated with a given sample. The resulting sample-level absorp-
tion spectrum (α) is used in the phase diagram model, where the recon-
struction loss is calculated on a per-sample basis.

When calculating a single absorption spectrum to represent each unique
composition, the aggregation over the printed composition duplicates is
achieved by collectively considering the set of pixels (Pcomp) in all samples
with the respective composition. This composition-aggregated absorption
coefficient (αcomp) was used both to generate ternary composition images
and for the emergent property model.

Beginning with a set of pixels P (either Psample or Pcomp, as described
previously), we take the negative logarithm of each fraction transmission
value. We represent the resultant image as an (m channel × n pixel) non-

negative matrix Y. We find the best approximation to Y ≅ Ŷ = α · τ, where α
is a nonnegative (m × 1) matrix representing the absorption spectra and τ is
a nonnegative (1 × n) matrix representing the thickness of material depos-
ited in a given pixel. To find α and τ, we use nonnegative matrix factoriza-

tion with a loss function given by 1
2

⃒⃒⃒⃒
Ŷ − Y

⃒⃒⃒⃒
+ a|α| + b|τ|, where || denotes

the Frobenius norm and | denotes the L1 norm. Heuristic choices of the
regularization parameters a and b were 1e−6 and 1e−2, respectively. The
result of this matrix factorization is a thickness profile τ with arbitrary units,
giving the spectral absorption α units of inverse thickness. The thickness
units from this model depend on the regularization parameters, and the use

of constant parameters enables analysis of the composition-dependent α
while disregarding τ for the present purposes.

We present two methods for identifying optically interesting materials
that are candidate three-cation phases, including substitutional alloys.

The Phase Diagram Model. A phase diagram can be described via a set of
phases p = {pi}, where a phase pi = (ci, ei) consists of its composition ci and its
associated energy ei. The set of phases that are thermodynamically stable
are given by the convex hull of this space, whose calculation via the
Quickhull algorithm (51) provides the phase diagram, where the facets of
the convex hull are phase fields.

For the pseudoternary phase diagrams in this paper, we represent the
composition c of a material as a 3-vector of molar fractions that sum to 1.
The set of phases must include the three elemental phases pelem = {pelem_1,
pelem_2, pelem3} at each corner, to which we assign a constant energy eelem_1 =
eelem_2 = eelem_3 = 0 so that the energy surface is constant through the
composition graph in the absence of an additional phase. Constraining the
energies enonelem of any additional nonelemental phases pnonelem to satisfy
enonelem_i < 0 ensures that all elemental phases will appear on the
convex hull.

We used the following process to generate a set of candidate phase di-
agrams. We divided ternary composition space into a grid with composition
intervals of 1/6, yielding a total of 25 potential nonelemental compositions (SI
Appendix, Fig. S11A). We enumerated all sets of 25 choose n compositions
with n ≤ 5. For each set of compositions cnon_elem, we paired each non-
elemental composition cnon_elem_i with an energy enon_elem_i drawn uniformly
at random from (−1, 0) to create sets of nonelemental phases pnon_elem. We
appended the set of elemental phases and computed a phase diagram. For
each set of 25 choose n nonelemental compositions, we repeated the ran-
dom sampling of energies 100 times. This procedure yielded a total of
2,590,093 phase diagrams, although the number of unique phase diagrams
is considerably smaller and depends on the random energy sampling. We
note that the energies {ei} are not intended to be estimations of relative
formation energies of the phases but rather provide a mechanism for ran-
dom sampling of the relative formation energy, which results in random
sampling of the set of Alkemade lines and thus compatibility triangles.

Given a phase diagram with phases p = {pi}, we make the assumption that
the absorption spectra within each phase field is given by linear interpola-
tion (i.e., the lever rule) of the absorption spectra of each phase α(pi). For a
given set of α(pi), this assumption allows us to construct a linear model for
the absorption spectrum at every composition αfit. Fitting a phase diagram
to observed data is a matter of selecting the values α(pi) that minimize a
given loss function. For each three-cation system, we observed a 9 channel ×
10 duplicate × 3,306 composition absorption spectra α. We considered a loss
function based on direct reconstruction of the signal with an ℒ2 norm:

losssignal = ∑
channels, duplicates, compositions

αfit − α( )2.

This so-called “signal fit” has the disadvantage that 1) the lower photon
energies result in smaller absorption signals, thus contributing less to the
loss, and are underweighted in the fit, and 2) a composition with high
variability in signal among 10 composition duplicates should be devalued to
avoid bias toward less trustworthy data in the optimization. We address
these issues by computing the SD of the signal σ(c) over nearby composi-
tions: Representing three-cation compositions as points on an equilateral
triangle where each vertex is a pure element, we normalize distances be-
tween the vertices to a distance of 1. We compute σ(c), the 9-channel SD of
the absorption spectra at a given composition c, considering each α mea-
surement whose composition lies within a radius of 0.05 of c, including all
duplicates. This enables regression fit of αi to minimize the loss:

losssigma = ∑
αfit −α( )2

σ c( )2

channels, duplicates, compositions

.

This so-called “sigma fit” was used for all results in the manuscript, and
signal fit results are also provided in the dataset release. We fit all the
candidate phase diagrams, and for each N in N = 4, 5, . . . 8, we saved the fits
with the smallest loss.

The Emergent Property Model. The purpose of this model is to identify three-
cation compositions whose optical absorption spectrum is difficult to at-
tribute to a linear combination of one or two-cation oxides.
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This section uses absorption spectra αcomp obtained by combining all 10
experimental copies of a composition on a plate prior to nonnegative matrix
factorization. We discretize the ternary composition space into composition
intervals of 1/10, corresponding to 30 regions on the perimeter rperimeter and
36 internal regions rinterior (SI Appendix, Fig. S11B).

For each perimeter composition, we define the absorption spectrum of the
neighboring region rperimeter as the mean of the absorption spectra mea-
surements for compositions within r = 1/10 of the grid composition,

αrperimeter =
∑
c∈r

α

nrperimeter

,

where nr_perimeter is the number of α measurements in rperimeter.
We enumerate an exhaustive list of linear combinations of three or fewer

absorption spectra of these perimeter regions. For all (30 choose 3) combi-
nations of perimeter regions, we enumerate all possible linear combinations of
the absorption spectra in a discretized ternary composition spacewith intervals of
1/10. This results in a set of 150,105 absorption spectra that represent all possible
absorption spectra, αcomb, one could obtain by combining up to three of the one
and two-cation compositions. For any material whose absorption spectrum is
distinct from every element of this set, we can assert that the material does not
comprise a simple mixture of the one and two-cation phases.

For each interior region r, we compute the nine-channel mean αr and the
nine-channel SD σr of the absorption spectra of the compositions in the
region. Since the samples in each region correspond to compositions within
a composition window of ∼10 at.%, the SD signal contains a substantial
contribution from systematic variation in α only when the compositional
gradient of α is particularly high. The more consistently significant contri-
butions to the SD signal arise from sample-to-sample variability in the signal
and any variation in signal from compositions within this window that be-
long to different composition-gradient lines in the experiment design (SI
Appendix, Figs. S1C and S11B). For each α∈ αcomb, we compute the proba-
bility p α|N αr , σr( )( ) that α was drawn from a nine-dimensional Gaussian dis-
tribution centered at αr with SD σr. The emergent property score of the
interior region is the maximum p α|N αr , σr( )( ) over all α∈ αcomb.

Sputter Deposition and Characterization. The Co-Ta-Sn follow-up measure-
ments in Fig. 4 are based on a continuous composition spread synthesized
atop a 100-mm-diameter XG glass disk by reactive cosputtering of metal
targets (Co, Ta, and Sn) using radio-frequency (RF) power supplies in a
combinatorial sputtering system (Kurt J. Lesker, CMS24). The sputtering at-
mosphere was composed of 0.6 mTorr reactive O2 gas and 5.4 mTorr inert Ar
sputtering gas. The RF powers were adjusted to obtain the designed com-
position in the wafer center, and the nonconfocal geometry of sputter
sources provided a continuous composition gradient spanning a 60 to 70
at.% range in the concentration of each cation element across the XG glass
substrates. Postdeposition annealing proceeded in a tube furnace at 750 °C
for 10 h (the same protocol as the printed library plate).

The library compositions were obtained by XRF measurements using an
EDAX Orbis Micro-XRF system with an X-ray beam ∼2 mm in diameter with
metal loadings (nmol·cm−2) based on elemental calibrations using com-
mercial XRF standards (Micromatter). For each composition, the cation-
weighted molar density was calculated using the molar density of the
endmember phases (Co2O3, Ta2O5, SnO2). This average molar density was
then combined with the cation molar loading to estimate the film thickness,

which ranged from 330 to 520 nm. Each calculated thickness has ∼10%
uncertainty, which is negligible compared to the dynamic range of absorp-
tion coefficient values observed in Fig. 4C.

The XRD was performed using a Bruker DISCOVER D8 diffractometer with
Cu Kα radiation from a Bruker IμS source. The measurements used a 0.3-mm
collimator to acquire a diffraction signal on a sample region of about
0.3 mm × 2 mm with two-dimensional VÅNTEC-500 detector followed by
integration into one-dimensional patterns using DIFFRAC.SUITE EVA soft-
ware. The crystalline phases present in each sample are identified by
matching XRD patterns with entries in the International Crystallography
Diffraction Database in the EVA software.

Gaussian function fitting was used on one-dimensional XRD patterns to
obtain the peak position (2θ) for rutile (101) reflection 2θ101 between 32°
and 36° and (211) reflection 2θ211 between 41° and 54°. Next, we solved the
lattice parameters a and c as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2d101 sin θ101 = λ

2d211 sin θ211 = λ

1
d2
101

= 1
a2

+ 1
c2

1
d2
211

= 5
a2

+ 1
c2

⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
a = λ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

sin2θ211 − sin2θ101

√
c = λ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

5 sin2θ101 − sin2θ211

√ ,

where λ denotes the X-ray wavelength (1.5406 Å).
Optical measurements on the sputtered film were performed using a

Shimadzu Solidspec-3700 spectrophotometer. Transmittance (T) and diffuse
reflectance (R) measurements were performed separately on each sample
spot using the integrating sphere. A BaSO4 powder reflector was used as the
reflection standard. Together with the sample thickness (τXRF) from XRF, the
absorption coefficient was calculated as follows:

α = − 1
τXRF

ln
T

1 − R
( ).

Data Availability. The optical absorption spectra, fitted phase diagrams, and
mixture probabilities have been deposited in Google Cloud Storage (http://
storage.googleapis.com/gresearch/metal-oxide-spectroscopy/README.txt;
see SI Appendix for documentation and access instructions).
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